
The Tor Network Status API
About Me
Name� Mattia Righetti
University� Politecnico di Milano, IT | Master of Science in Computer Science �Expected
graduation: Sept 2023�
Contacts: mattiarighetti@outlook.com
Website: https://mattrighetti.com
GitHub: https://github.com/mattrighetti
Timezone� GMT�1 Rome
Resume: https://mattrighetti.com/resume.pdf

Hey there! My name is Mattia and I am a software engineer with a passion for backend
engineering and distributed systems. I am about to complete my thesis for my MSc in
computer science at Politecnico di Milano, Italy.

Throughout my career, I have primarily worked as a backend engineer and have gained
extensive experience in this area. I am particularly interested in exploring the world of
distributed systems and am constantly looking for ways to challenge myself in this
field.

In addition to my professional work, I am also a great user of Tor browser, which is why
I want to collaborate on this open source project in the first place. I believe in the
power of collaborative work and enjoy contributing to open source projects whenever I
can, especially to get to know more about the organization and its efforts to give
privacy to users.

Finally, I am excited to learn more about Rust and its backend ecosystem. I believe
that Rust has a lot of potential in the world of backend engineering, and I am eager to
explore this area further.

Thank you for considering me, and I look forward to the opportunity to contribute my
skills and experience to the Tor project.

Code Contribution
Fixes #40034 �Merged)� Very first contribution to the sub-org project onionoo. The
PR mainly contains code refactoring. Commits mostly change dead/unused code
that was marked for deletion a long time ago but was still present in the
codebase.

mailto:mattiarighetti@outlook.com
https://mattrighetti.com/
https://github.com/mattrighetti
https://mattrighetti.com/resume.pdf
https://gitlab.torproject.org/tpo/network-health/metrics/onionoo/-/merge_requests/23

Project Information
Sub-Org: Tor Network Health

Project Abstract

In an effort to improve current resource utilisation and optimisation, the Tor team is
developing a new version of their pipeline (v2.0�. This update involves transferring
much of the data related to Tor nodes and bridges from files stored on a single
server's disk to two separate databases: Postgres and Victoria Metrics.

The main objective of this project is to design a RESTful API service using the
actix_web framework that is going to be integrated in the new pipeline v2.0 to
support data retrival from the two databases. In particular, the focus will be on
designing the new APIs, its requests, and response formats. The project will also
involve defining appropriate endpoints and data models, ensuring scalability,
performance, and security. The final goal is to achieve a web service that is going to
extend/replace the current onionoo protocol used by stakeholders interested in the
status of the Tor network and its individual nodes.

Detailed Description

Currently, the Tor network status informations are retrived from a service called
onionoo which is a web protocol that provides data about running Tor relays and
bridges to other applications and websites.

Onionoo as of March 2023 does three things:

 Reads the current tor network descriptors
 Writes statuses in txt files to disk
 Produce output for each relay and bridge from all those status files

As stated in the pipeline's wiki, these three tasks create two different kind of
problems:

Descriptors are processed multiple times in multiple places
Tasks are heavy on disk and network I/O ops, which slows down the service and
metrics processing

To solve the problems listed above, the Tor team is currently working on a pipeline 2.0
which makes use of two databases to store and archive all of this data, in particular, a
Postgres database and an instance of Victoria Metrics for timeseries data. By querying
the database, most of the disk I/O operations that the service had to run are gone and
responsiveness should be improved, potentially by a lot. Also, server load should drop
significanlty because there are no more procesess running those I/O operations

https://metrics.torproject.org/onionoo.html
https://gitlab.torproject.org/tpo/network-health/team/-/wikis/metrics/collector/pipeline#proposed-architecture

described above. The Victoria Metrics instance, on the other hand, is going to enable
historical data querying which is a feature that the Tor Network teams is looking
forward to and that is not offered by onionoo.

With the introduction of this new pipeline 2.0 and the adoption of Postgres and
Victoria Metrics, it comes the need of a web service that does the heavy lifting task of
serving results data to interested stakeholders. Since the service is going to slowly
take over/extend the onionoo protocol, actix_web is the framework proposed to
develop the RESTful APIs, which is a well estabilished web framework written in Rust
with a huge community behind it and it promises peak performance and reliability.

Backward compatibility is a valuable asset in this particular case especially if we want
the service to either extend or replace onionoo. For the service to be ready-to-use and
ready-to-test I propose to keep the same endpoints that onionoo offers at the moment:

GET https://onionoo.torproject.org/summary : returns a summary document
GET https://onionoo.torproject.org/details : returns a details document
GET https://onionoo.torproject.org/bandwidth : returns a bandwidth document
GET https://onionoo.torproject.org/weights : returns a weights document
GET https://onionoo.torproject.org/clients : returns clients document
GET https://onionoo.torproject.org/uptime : returns an uptime document

Same goes for the query parameters:

type

running

search

lookup

country

as

as_name

flag

first_seen_days

last_seen_days

first_seen_since

last_seen_since

contact

family

version

os

host_name

recommended_version

https://metrics.torproject.org/onionoo.html#summary
https://metrics.torproject.org/onionoo.html#details
https://metrics.torproject.org/onionoo.html#bandwidth
https://metrics.torproject.org/onionoo.html#weights
https://metrics.torproject.org/onionoo.html#clients
https://metrics.torproject.org/onionoo.html#uptime
https://metrics.torproject.org/onionoo.html#parameters_type
https://metrics.torproject.org/onionoo.html#parameters_running
https://metrics.torproject.org/onionoo.html#parameters_search
https://metrics.torproject.org/onionoo.html#parameters_lookup
https://metrics.torproject.org/onionoo.html#parameters_country
https://metrics.torproject.org/onionoo.html#parameters_as
https://metrics.torproject.org/onionoo.html#parameters_as_name
https://metrics.torproject.org/onionoo.html#parameters_flag
https://metrics.torproject.org/onionoo.html#parameters_fist_seen_days
https://metrics.torproject.org/onionoo.html#parameters_last_seen_days
https://metrics.torproject.org/onionoo.html#parameters_first_seen_since
https://metrics.torproject.org/onionoo.html#parameters_last_seen_since
https://metrics.torproject.org/onionoo.html#parameters_contact
https://metrics.torproject.org/onionoo.html#parameters_family
https://metrics.torproject.org/onionoo.html#parameters_version
https://metrics.torproject.org/onionoo.html#parameters_os
https://metrics.torproject.org/onionoo.html#parameters_host_name
https://metrics.torproject.org/onionoo.html#parameters_recommended_version

fields

order

offset

limit

Response structure should also be kept the same in order to not break current clients,
even though the onionoo protocol page explicitly warns

Clients should be able to handle all valid JSON responses, ignoring unknown fields and not
breaking horribly in case of missing fields.

All of this should be the basis and a good starting point for the project.

Keeping the same structure of the onionoo service makes integration easier with
current solutions adopted in the Tor org and it could be useful in the foreseeable
future when we are going to slowly transition network traffic and load from onionoo to
the new Tor Network Status APIs.

Moving on to the new historical data feature enabled by Vicotria Metrics, I propose
two different solutions that we may want to explore further:

 Introduce a new endpoint by prepending /history to the current endpoints +
range filters

 /history/summary
 /history/clients

 Work with new range filters only

The first proposed solution will result in a cleaner codebase because the history
endpoint (i.e. /history/summary) is going to have a completely separate logic from the
default endpoint (i.e. /summary). This is useful since the historical endpoint needs to
contact Victoria Metrics while the non-historical endpoint is going to query Postgres.
Also, the historical endpoint logic will need to use a web-client to query Victoria
Metrics + PromQL (Victoria Metrics HTTP API, Victoria Metrics Query data), while the
default endpoint will just make use of a default connection to Postgres + plain SQL
queries.

If we want to keep the same endpoints both for historical and non-historical data and
just work with range filters as URL query parameters we will need to encapsulate both
logics under a single endpoint which could be harder to read, test and maintain.

Either way, both solutions will provide date range filters to select dates of interest. I
propose to use URL query parameters that take an initial date start_date of interest
and an end date end_date , both of them should take a date in ISO 8601, YYYY-mm-dd
could be enough for this use case but that is up to discussion. An example of historical
query filters would be start_date=2023-01-10&end_date=2023-01-15 .

https://metrics.torproject.org/onionoo.html#parameters_fields
https://metrics.torproject.org/onionoo.html#parameters_order
https://metrics.torproject.org/onionoo.html#parameters_offset
https://metrics.torproject.org/onionoo.html#parameters_limit
https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#prometheus-querying-api-usage
https://docs.victoriametrics.com/Quick-Start.html#query-data

ad-hoc Caching solutions (i.e. Redis) shouldn't be necessary at the very beginning and
should be implemented when there's real need for it because it's going to introduce
significant complexity in the design phase. It's also important to point out that before
ad-hoc caching solutions we should leverage Postgres caching and query
optimizations which in most cases make the former not necessary. Indeed, a proper
Postgres setup is going to cache indexes, query plans and table data in RAM, so it
should be pretty fast. Exploring current performances of queries could hint if there's
real room for improvements in caching, i.e. looking at the ratio of data coming from
disk I/O or Postgres shared_buffer.

Finally, I propose to place an NGINX instance as a reverse proxy in front of the service
for multiple reasons:

 Improved security� By putting NGINX in front of our service, we can offload the task
of handling incoming requests and enforcing security policies to a dedicated proxy
server. This reduces the exploitable surface, making it less vulnerable to common
attacks.

 Load balancing and scalability� NGINX can act as a load balancer, distributing
incoming requests across multiple instances of our service. This improves the
scalability and availability of the service by handling more requests and reducing
the impact of failures or downtime.

 Caching and performance optimization� NGINX can cache frequently requested API
responses. It can also compress responses and perform other optimizations to
improve the performance of our APIs.

 Simplified API management: central point of control for managing APIs, including
authentication and authorization, rate limiting, and access control. This simplifies
the management and configuration of APIs, making it easier to enforce policies
and monitor usage.

 SSL/TLS encryption: useful to encrypt traffic between clients and the proxy server.

This is a high level picture of the final architecture of the service

Development Details

In this section I would like to elaborate more on the proposed Rust crates to use in the
project and explain why they are a good fit:

actix_web is the proposed framework for this project, both for performances and
reliability. To maximise system resources usage, everything will be programmed to
run and serve requests concurrently.
sqlx to interface with Postgres, it provides concurrent connections to Pg and is
used and maintained by a large community. diesel is another famous and well
adopted crate, but it's harder to setup and could present a significant obstacle for
newcomers that would like to contribute to the project in the future.
reqwest is going to be the HTTP client to query Victoria Metrics APIs, but I could
also see it used in API tests to impersonate a real user querying the service. If we
need a more fine-grained control of requests we can opt for hyper .
serde for data serialization and de-serialization, it's the de-facto standard in Rust
and it is also deeply integrated with actix_web .
config is the proposed crate to setup project configuration files.

Development workflow steps include:

APIs implementation
APIs testing
APIs documentation

API testing will be automated with GitLab CI/CD pipelines. Each endpoint is going to
be tested with an HTTP client and each test will be run with expected and un-

https://actix.rs/
https://github.com/launchbadge/sqlx
https://github.com/seanmonstar/reqwest
https://github.com/hyperium/hyper
https://github.com/serde-rs/serde
https://github.com/mehcode/config-rs

expected data/filters to check that everything behaves as expected.

Timeline
Week 1:

 Community bonding

Week 2:

 Current APIs/protocol review
 Design new API for historical data (new filters, endpoints)
 Discuss possible improvements in re-desining some of the existing APIs/protocol
 Layout initial project structure (actix_web)
 GitLab CI/CD setup

Week 3

 Initial API implementation
 /summary
 /details

 API Documentation
 API Testing

Week 4

 API implementation
 /bandwidth
 /weights

 API Documentation
 API Testing

Week 5

 API implementation
 /clients
 /uptime

 API Documentation
 API Testing

Week 6

 Code refactoring
 Performance tests and evaluation

 �Beta deployment and test)

Week 7

 Historic data API implementation
 API Documentation
 API Testing

Week 8

 Historic data API implementation
 API Documentation
 API Testing

Week 9

 Historic data API implementation
 API Documentation
 API Testing
 (dev deployment and test)

Week 10

 Code refactoring
 Performance tests and evaluation

Week 11

 Code refactoring
 Performance tests and evaluation
 NGINX test deployment

Week 12

 NGINX test deployment
 Performance tests and evaluation

Other Commitments
Dad 60 year birthday vacation �6�12 July)

